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Abstract

We investigate the semantic segmentation of recyclable
waste using both supervised CNNs and self-supervised con-
trastive pretraining, as well as various post-training tech-
niques. We train and evaluate SOTA U-Net and DeepLabV3
models on the ZeroWaste dataset as starting baselines. We
then explore the effects of SimCLR-style pretraining and
test-time refinement via Conditional Random Field Post-
Processing and Uncertainty-Aware Refinement Networks on
our baseline models. Contrastive pretraining is shown to
underperform without a sufficient batch size and displays an
inability to extract finer-grained semantic details required
for semantic segmentation, while alternatively improving
high-level feature extractions. Our results show that Con-
ditional Random Fields can improve precision, but at a sig-
nificant cost to performance due to oversmoothing object
boundaries. Uncertainty Aware Refinement networks are
shown not to offer strict overall performance improvements,
but do offer an equally performing variant with tradeoffs be-
tween higher accuracies for already high-performing ma-
terials classes and lower accuracies for underperforming
classes. DeepLabV3 remains the strongest baseline, with
UARNet offering modest improvements and tradeoffs.

1. Introduction

We are investigating the problem of using image recogni-
tion to identify and sort recyclable materials. Waste is often
not sorted correctly in recycling facilities, which leads to
both false negatives (recyclable materials thrown into land-
fills) and false positives (landfill waste mixed with recy-
clables), making efficient and automated sorting pipelines
integral to proper waste disposal and environmental safety.
Our project aims to prevent these errors from happening us-
ing computer vision on complex and cluttered data to ensure
accurate, robust, and efficient recycling.

Our problem takes as input RGB images containing mul-
tiple types of recyclable waste, such as plastics, cardboard,

metal, and soft plastics, arranged in cluttered, real-world
scenes. We then use a segmentation model (i.e., DeepLab,
U-Net) to output a dense per-pixel labeling (semantic seg-
mentation) where each pixel is assigned to one of the tar-
get waste classes or background. This requires both global
context understanding (to recognize material textures and
shapes) and precise local boundary delineation (to sepa-
rate adjacent or overlapping objects). Accurate segmen-
tation enables downstream sorting mechanisms to identify
and segregate different waste materials for recycling.

In addition to training various baseline CNN models on
our dataset, we test the effects of contrastive pretraining
and post-training augmentations on the waste segmentation
problem to probe which techniques are best for each use
case. We evaluate performance using standard segmenta-
tion metrics such as Intersection over Union (IoU) and pixel
accuracy. Our experiments are conducted on the ZeroWaste
dataset, a challenging benchmark featuring real-world, clut-
tered scenes with diverse recyclable materials.

2. Related Work

Semantic segmentation of waste is an emerging area with
several recent datasets and approaches, with a variety of
challenges that come along with it.

2.1. Datasets

For example, the TACO dataset [5] provides waste in the
wild images with diverse environments like beaches and
roads, each annotated with pixel-level classes (plastic, pa-
per, etc.). Likewise, the ZeroWaste dataset [2] provides
industrial conveyor-belt scenes with highly cluttered waste
objects such as soft/rigid plastic, cardboard, and metal la-
beled at the pixel level. Other novel datasets include the
MJU-Waste dataset [8], which adds depth data to RGB
images, helping to distinguish between overlapping or oc-
cluded items, and the WasteMS dataset [12], which is the
first multispectral dataset established for the semantic seg-
mentation of lakeside waste. These datasets all highlight
common challenges within the waste segmentation field,
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which are deformable objects, severe occlusion, class im-
balance, and background clutter. We tended towards the
ZeroWaste dataset due to its inclusion of both labelled seg-
mentation masks and unsupervised images.

2.2. CNN-based Segmentation Methods

Traditional CNNs and encoder-decoder models remain
the state-of-the-art (SOTA) for waste segmentation. Com-
mon architectures such as FCN, U-Net, and DeepLabV3
have been applied as baselines. For instance, DeepLabV3
trained on ZeroWaste has only achieved ∼52% mean IoU
on the test set, demonstrating the domain’s difficulty. These
architectures have been extended in various ways in hopes
of improving their performance:

• DeepLab-based baselines: ZeroWaste’s authors re-
ported that DeepLabV3 with a ResNet101 backbone
achieved ∼52% mean IoU [2]. While effective in
a multi-scale context, the model struggled with rare
classes such as rigid plastic and metal, and data aug-
mentation only slightly improved the results.

• U-Net variants: U-Net architectures are popular for
their simplicity on small datasets. For example, Wei
et al. [10] developed an improved U-Net for underwa-
ter garbage, achieving > 85% IoU on each class by
adding focal loss and deeper encoder backbones. Sim-
ilarly, Qi et al.’s NUNI-Waste method [6] uses a U-Net
with adaptive loss and novel data augmentation on Ze-
roWaste to raise mean IoU from ∼51% to 55.4% over
the baseline by weighting classes and consistency reg-
ularization.

• Boundary-aware CNNs: New architectures modify
CNNs specifically for waste. For example, COSNet in-
troduces novel components such as feature-sharpening
blocks and boundary enhancement modules to better
capture irregular waste object edges [1]. COSNet was
shown to yield a ∼1.8% mean IoU gain on ZeroWaste-
f, showcasing how enhancing boundary features im-
proves CNN segmentation in cluttered scenes.

Overall, fully-supervised CNNs achieve the highest ac-
curacy given labels, with SOTA results in the mid-50%
IoU range. The strengths of CNNs are that they are well-
understood, fast at inference, and excel with sufficient an-
notations. Weaknesses include expensive pixel-level labels,
overfitting to specific backgrounds, and struggling with rare
classes or occlusion.

2.3. Transformer-based Methods

Vision Transformer (ViT) and hybrid models have been
able to achieve general SOTA in segmentation; however,
their application to waste images has not been fully ex-
plored. Models such as SegFormer, which uses transformer

encoders with MLP decoders, reached higher mIoU than
previous convnets on Cityscapes, demonstrating the power
of global self-attention [11]. In principle, these architec-
tures could benefit waste segmentation through reasoning
across clutter, but would require large training data.

In practice, so far, there are a few studies that hint at the
potential of transformers. NUNI-Waste briefly tests trans-
former backbones, with them reporting similar results to
CNN baselines [6]. Another paper found Swin-Transformer
to be effective on building material segmentation for con-
struction, suggesting its potential for waste segmentation
[9]. However, no fully dedicated waste segmentation paper
fully exploits transformers.

Pros of transformers include their ability to model global
context and flexible attention, which could capture varia-
tions in waste objects. The cons of transformers are their
need for an abundance of data and compute, of which there
are few annotated waste images. Although CNNs still dom-
inate the field, future work will likely integrate transformers
to push the frontier as more annotated data becomes avail-
able.

2.4. Weakly-Supervised Methods

To address expensive annotation, weak supervision
(training with image-level or coarse labels) has been an
emerging field. In waste segmentation, ZeroWaste authors
collected ZeroWaste-w, where each frame is labeled “be-
fore” or “after” manual removal of target material. They
then used Class Activation Mapping (CAM) to get pseudo-
masks. However, CAM and other improved/simpler CAM
variants failed to get above 34.6% IoU, which is far below
the 52% IoU of the fully-supervised baseline [2].

Video is also utilized as another weak cue. Marelli et al.
build saliency maps that exploit the temporal coherence be-
tween consecutive frames in a video, promoting consistency
when objects appear in different frames [4]. On a small lab
dataset, they were able to outperform a CAM method, high-
lighting how weak supervision can help.

Weakly-supervised segmentation in waste is an active
but very early field with strengths being cheap annotation
and the weakness of noisy and incomplete masks with IoU
scores that fall significantly below fully-supervised base-
lines. We incorporate an unsupervised training stage into
our training pipeline to explore how semi-supervised pro-
cesses affect overall performance and class predictions.

3. Methods
3.1. Baseline: Predict-All-Background

Our simplest baseline method is to predict every pixel
as a background class. This is a valid baseline because the
majority of the pixels in our images are background, so this
method establishes a lower bound for our more advanced



methods.

3.2. CNN Architectures

We trained two pre-initialized, SOTA CNN architectures
(U-Net and DeepLabV3) on the ZeroWaste-f train dataset as
standard baselines for semantic segmentation. We also ap-
ply contrastive pretraining and various post-training meth-
ods to the baselines in hopes of improving performance at
test time.

3.2.1 U-Net + MobileNetV2

U-Net is a convolutional neural network architecture that
has become a standard model for general semantic segmen-
tation tasks [7]. The architecture is characterized by a sym-
metric “U” shape consisting of a contracting encoder path
and an expanding decoder path. The encoder is a typical
convolutional neural network that applies repeated convo-
lution and max-pooling operations to capture high-level se-
mantic features while reducing the spatial resolution of the
image. The decoder performs upsampling, which is the pro-
cess of increasing the spatial resolution of feature maps in
order to recover the original input size for the output pre-
dictions. Some common techniques for upsampling include
transposed convolutions, where sets of weights are learned
to operate, bilinear or nearest neighbor interpolation, which
resizes feature maps based on simple mathematical rules,
and unpooling, which reverses the max-pooling operation
by placing values back into their original location. A key
feature of U-Net is the use of skip connections, in which at
each level feature maps from the encoder are concatenated
with corresponding decoder features. We utilize a pre-
trained MobileNetV2 as our encoded backbone. This con-
figuration offers a strong balance between efficiency and ac-
curacy: MobileNetV2’s depthwise separable convolutions
reduce parameter count and FLOPs, while U-Net’s skip
connections recover spatial detail and localization, making
it well-suited for segmenting small, irregularly shaped, and
occluded waste objects under limited compute budgets.

3.2.2 DeepLabV3 + ResNet50

The other model we used is PyTorch’s DeepLabV3 segmen-
tation model with a ResNet-50 backbone. DeepLabV3 is a
state-of-the-art semantic segmentation model that combines
powerful feature extraction with refined boundary localiza-
tion, designed for solid performance across objects of vary-
ing sizes. This is useful because in the ZeroWaste dataset,
there is much more clutter and variance in object size. The
model uses a ResNet-50 encoder, which is pretrained on
ImageNet; this helps extract strong image features without
needing to train from scratch.

DeepLabV3 introduces convolution with upsampled fil-
ters or “atrous convolution,” which allows explicit control of

the resolution at which feature responses are computed [3].
The central innovation is the Atrous Spatial Pyramid Pool-
ing (ASSP) module, which applies multiple parallel atrous
convolutions with different sampling rates. This allows the
model to capture contextual information at multiple scales
without reducing the spatial resolution. ASSP enables the
network to have a large receptive field and handle objects of
various sizes more effectively than standard CNNs. Lastly,
to address the challenge of segment boundary refinement,
DeepLabV3 introduces a decoder module that upsamples
the ASSP output and combines it with low-level features
from earlier, helping the model to produce sharper object
boundaries and more accurate segmentation.

We initialized the segmentation head randomly (without
pretraining) while using a ResNet-50 backbone pretrained
on ImageNet, so the model learns pixel-wise class predic-
tions specific to the ZeroWaste dataset. Overall, we chose
this model because of ASPP’s ability to capture objects at
multiple scales, which we believed would be useful in Ze-
roWaste’s more complicated and cluttered images.

3.3. Self-Supervised Contrastive Pretraining

We used a SimCLR approach for contrastive pretrain-
ing to help our model’s encoder extract general, transfer-
able visual features from unlabeled data. These features are
later fine-tuned for downstream tasks, specifically semantic
segmentation. The aim of this self-supervised contrastive
pretraining is to push representations of similar materials
closer together and push further classes apart. This con-
trastive pretraining stage is only applied to our DeepLabV3
encoder due to computational limitations.

Our DeepLabV3 encoder is a ResNet-50 network back-
bone (excluding the final fully connected layer), which ex-
tracts high-level feature representations from input images.
These were then passed through a lightweight projection
head consisting of a Linear → ReLU → Linear architec-
ture, mapping them to a lower-dimensional space where
contrastive learning is performed to optimize feature extrac-
tion.

The contrastive loss used is the NT-Xent (Normalized
Temperature-scaled Cross Entropy) loss, defined as:

l (i, j) = − log
exp( sim(zi, zj) / τ)∑2N

k=1 1k ̸=i exp( sim(zi, zk) / τ)

where sim(zi, zj) denotes cosine similarity between embed-
dings and τ is a temperature parameter.

We initialize Resnet50 with ImageNet weights and
train the encoder + projection head on the unsupervised
ZeroWaste-S dataset. We then discard the projection head
and reintegrate the contrastively pre-trained encoder as the
backbone of a DeepLabV3 segmentation model. After the
pretraining stage, we then fine-tune this new model on the



Figure 1. Post-training Architectures

labeled ZeroWaste-f segmentation dataset, as we did with
the previously initialized U-Net and DeepLabV3 models.

3.4. Evaluation-time Post-training Methods

To improve the output quality of our segmentation mod-
els without retraining the backbone, we experimented with
two post-training refinement techniques. These methods
operate on the output logits of trained models (DeepLabV3,
U-Net, and contrastively pre-trained DeepLabV3) and aim
to enhance segmentation predictions without modifying the
original model weights.

3.4.1 CRFPP (Conditional Random Field Post-
Processing)

We apply a dense Conditional Random Field (CRF) as a
post-processing step to refine raw segmentation outputs.
CRFs model contextual dependencies by encouraging la-
bel consistency between nearby pixels with similar appear-
ance. Specifically, we use a fully-connected CRF with
Gaussian edge potentials and apply mean-field approxima-
tion for MAP inference. This method aims to sharpen object
boundaries and reduce spurious noise by applying smooth-
ing. A pixel surrounded by conflicting pixels should be rela-
beled, while areas of stark differences should be reinforced
as boundaries.

3.4.2 UARNet (Uncertainty-Aware Refinement Net-
work)

UARNet is a lightweight convolutional refinement network
trained to adjust model predictions using uncertainty cues in
model output. For each input pixel, the UARNet takes the
per-class logits of that pixel from the already trained CNN
model and appends a confidence heuristic, defined below.

confp = max
c

softmax(yp)c

The softmax returns a probability distribution over classes
for each pixel, and taking the maximum gives us a heuris-
tic on how confident the model is in predicting that pixel
correctly. This per-pixel confidence value is concatenated
to the logits output from the trained CNN architecture.
This confidence map highlights uncertain regions where the

model is less confident in its predictions. This turns into
H ∗W ∗ (num classes + 1) vector. This concatenated vec-
tor with num classes + 1 channels is then fed to a 2-layer,
2D convolutional network, which again outputs a new set
of per-pixel logits with shape H ∗ W ∗ (num classes). By
concatenating this confidence channel with the logits and
image, UARNet learns to identify both the correct and am-
biguous predictions. It is trained on validation data using
standard cross-entropy loss.

4. Dataset
Our project uses the ZeroWaste-f dataset, which has

4,503 fully annotated images for semantic segmentation
tasks, split into 3002 training images, 572 validation im-
ages, and 929 test images, all from real, cluttered recycling
factory floors. ZeroWaste has each labeled pixel belong-
ing to one of 5 classes: Background image, rigid plas-
tic, cardboard, metal, and soft plastic. To increase our
training dataset and improve robustness, we perform both
offline and online augmentations. For offline augmenta-
tion, we apply torchvision transforms: random horizon-
tal flips (p=0.5), RandomAffine with ±5° rotation, up to
4% translation, 0.9–1.0 scaling, 5° shear, bilinear interpo-
lation and zero padding, followed by ColorJitter (bright-
ness/contrast/saturation ±0.2, hue ±0.1) and a 3×3 Gaussian
blur. Corresponding mask transforms use nearest-neighbor
interpolation and zero fill for consistency. During train-
ing, we use Albumentations for online augmentation: re-
sizing to 256×256, horizontal flips, random Affine (scale
0.9–1.1, translate ±5%, rotation ±10°, shear ±5°), ColorJit-
ter (same parameters), Gaussian blur (kernel 3–5, p=0.3),
and ImageNet-style normalization. This two-stage pipeline
ensures both training dataset size expansion to 6004 images
and on-the-fly variability to improve generalization.

For our contrastive pretraining stage before supervised
fine-tuning, we leverage unlabeled ZeroWaste-s frames,
containing 6212 unlabeled images from a recycling facil-
ity’s conveyor belt that is subject to varying lighting and
occlusion. During contrastive training, we additionally ap-
plied a series of random data augmentations to generate two
distinct views of each image. These included random re-
sized cropping, horizontal flipping, color jittering, grayscale
conversion, and Gaussian blur.

5. Experiments/Results/Discussion
5.1. Hyperparameters

For all our models, we trained for 10 epochs due to em-
pirically approaching or achieving convergence, and also
due to computational resource limitations.

For DeepLabV3, we used a learning rate of 1e-4 be-
cause it is a decently low value that results in stable training
and convergence after we empirically tried different learn-



ing rates. We used a batch size of 64 because it balanced
stable training and GPU memory limits. For our optimizer,
we used the Adam optimizer because it is an adaptive learn-
ing rate method that results in stable training. U-Net used
the same hyperparameters for the same reasons.

For contrastive pretraining, we used a learning rate of
3e-4 to allow our model to more quickly optimize for con-
trastive loss within 10 epochs. We also used a batch size of
64 because, for SimCLR, larger batch sizes are better due
to there being more negative samples to compare with. We
also used the Adam optimizer for the same reasons above.
We used regular validation to tune our hyperparameters.

5.2. Evaluation Metrics

We evaluate our model using three standard metrics for
semantic segmentation: Intersection over Union (IoU),
Precision, and Pixel Accuracy. All metrics are computed
per class and averaged to obtain the mean score.

• Intersection over Union (IoU) measures the overlap
between the predicted segmentation and the ground
truth, normalized by their union. For class c, IoU is
defined as:

IoUc =
TPc

TPc + FPc + FNc

where TPc is the number of true positive pixels for
class c, FPc is the number of false positives, and FNc

is the number of false negatives.

• Precision quantifies how many of the predicted pixels
for class c are actually correct. This metric helps assess
the model’s tendency to overpredict a given class.

• Pixel Accuracy calculates the overall proportion of
correctly classified pixels.

5.3. Experiments

We evaluated our models on the test set in the Zerowaste-
f dataset. The baseline models include the predict-all-
background, U-Net, and DeepLabV3 models finetuned on
the Zerowaste-f training set. Additionally, we train a
DeepLabV3 contrastively pre-trained on Zerowaste-s and
fine-tuned on Zerowaste-f. Finally, we explore 2 additional
variants of post-training (CRFPP, UARNet) for all 3 previ-
ously trained models.

5.4. Results and Analysis

Table 1 shows the per-class and mean segmentation met-
rics using the predict-all-background baseline. Since the
majority of the pixels are background class, the IoU, pre-
cision, and pixel accuracy are all relatively high for back-
ground pixels, but everything else is zero, as expected. This
is the bare minimum that future models should improve on.

Class IoU Precision Pixel Acc.
Background 0.83 0.83 1.00
Rigid Plastic 0.00 0.00 0.00
Cardboard 0.00 0.00 0.00
Metal 0.00 0.00 0.00
Soft Plastic 0.00 0.00 0.00
Mean 0.17 0.17 0.20

Table 1. Predict-all-background Metrics

Figure 2. Training and validation loss over time for DeepLabV3.

Figure 3. Training and validation loss over time for DeepLabV3
with contrastive pretraining.

Figures 2 and 3 show the loss patterns during fine-
tuning for both DeepLabV3 and contrastively pre-trained
DeepLabV3, respectively. DeepLabV3 without contrastive
pretraining already has a very low loss after the first
epoch, which demonstrates ResNet50’s ImageNet encoder
strength. Since we learn a new encoder with contrastive pre-
training, we see the loss start high but converge after several
epochs.

Table 2, 3, and 4 show the impacts of the two
post-training methods on three different models: U-Net,
DeepLabV3, and DeepLabV3 with contrastive pretraining,
respectively. Across all three models, CRFPP drastically
decreased the IoU scores for non-background classes be-
cause it tried to predict more pixels as background due to



U-Net Original CRFPP UARNet
IoU Precision Pix. Acc. IoU Precision Pix. Acc. IoU Precision Pix. Acc.

Background 87.35 90.42 96.25 85.62 87.11 98.04 87.59 91.26 95.61
Rigid Plastic 05.16 46.69 05.49 00.14 30.37 00.14 00.59 59.80 00.60
Cardboard 43.41 67.01 55.21 38.03 73.45 44.10 46.32 65.54 61.24
Metal 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Soft Plastic 39.92 79.52 44.49 13.59 93.96 13.72 40.56 77.20 46.08

mean 35.17 56.73 40.29 27.48 56.98 31.20 35.01 58.76 40.70
Table 2. Per-class and mean segmentation metrics for U-Net that is post-trained with different models: Original, CRFPP, and UARNet.

DeepLabV3 Original CRFPP UARNet
IoU Precision Pix. Acc. IoU Precision Pix. Acc. IoU Precision Pix. Acc.

Background 88.51 90.96 97.05 86.43 87.49 98.61 88.64 92.30 95.71
Rigid Plastic 15.29 48.73 18.23 03.22 60.58 03.28 11.64 55.43 12.84
Cardboard 44.47 73.87 52.77 37.89 80.31 41.77 49.35 68.49 63.86
Metal 09.35 35.52 11.25 00.60 76.68 00.60 00.00 00.00 00.00
Soft Plastic 48.10 78.67 55.32 24.34 90.66 24.96 48.77 78.10 56.50

mean 41.14 65.55 46.92 30.50 79.14 33.85 39.67 58.87 45.78
Table 3. Per-class and mean segmentation metrics for DeepLabV3 that is post-trained with different models: Original, CRFPP, and UAR-
Net.

Pre-trained
DeepLabV3

Original CRFPP UARNet
IoU Precision Pix. Acc. IoU Precision Pix. Acc. IoU Precision Pix. Acc.

Background 86.41 90.94 94.55 86.12 87.68 97.98 87.25 90.97 95.53
Cardboard 2.33 62.93 2.36 0.22 88.23 0.22 0.00 0.00 0.00
Soft plastic 41.18 61.37 55.59 38.84 74.82 44.69 44.69 66.38 57.76
Metal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rigid plastic 43.48 70.09 53.39 21.78 84.56 22.68 42.44 72.99 50.55

mean 34.68 57.07 41.18 29.39 67.06 33.11 34.88 46.07 40.73
Table 4. Per-class and mean segmentation metrics for Contrastive Pre-trained DeepLabV3 that is post-trained with different models: Orig-
inal, CRFPP, and UARNet.

its smoothing properties. However, this improved the pre-
cision because the pixels that are still classified as non-
background even after smoothing are more likely to be cor-
rect and reduce the false positive rate. For U-Net, this trend
with CRFPP was not as apparent in terms of the increases
in precision; this is likely due to U-Net having a shallow
encoder, so its predictions are already more fuzzy and un-
certain near boundaries. CRFPP may oversmooth and de-
grade precision in this case. For all three models, UARNet
increased the scores for classes that it was already doing
well on, and pushed down the scores for classes that it was
previously not doing well on. Notably, we notice that IoU
scores increase for background, cardboard, and soft plastic,
while drastically decreasing for rigid plastic and metal. This
makes sense because UARNet uses confidence levels in its
predictions. Since it was already receiving a low reward
for these classes, and had low confidence in them, the final
refinement CNN learned to stop predicting them, or pre-

dict them less in favor of the classes it was already highly
confident in. Thus, we see that UARNet training relatively
maintained IoU and pixel accuracy, while dropping over-
all precision. Although UARNet does not strictly improve
upon these performance metrics, it presents itself as a viable
alternative to the baselines for use cases where identifying
the less common materials is not as important as identifying
the high-quality materials.

Looking at Figure 4, we consolidate our results from Ta-
ble 2, Table 3, and Table 4 to compare the mean IoU across
each architecture over our post-training techniques. We find
that for both DeepLabV3 with contrastive pretraining and
U-Net that both the original architecture and post-training
with UARNet boast very similar results, with one having
UARNet barely beat out the original and vice versa. In ad-
dition, we only see a slight drop in IoU for DeepLabV3
for UARNet, suggesting that UARNet, with more tuning,
has the potential to be able to make slight improvements



Figure 4. Comparisons on mean IoU for DeepLabV3, Contrastive
Pretraining DeepLabV3 and U-Net across post-training techniques

to the original architecture. An interesting observation is
how DeepLabV3 with contrastive pretraining consistently
underperforms in comparison to the original DeepLabV3
model. We hypothesize that this is likely due to two factors.
First, the DeepLabV3 encoder is already highly effective,
leaving limited room for improvement. Second, contrastive
pretraining is highly sensitive to the batch size of negative
samples. Without a sufficiently large batch, it may fail to
provide meaningful benefits. Additionally, negative exam-
ples in contrastive objectives may inadvertently push visu-
ally similar materials apart, negatively impacting the class
segmentation performance.

Inside Figure 5, when we inspect the DeepLabV3 predic-
tions and contrastively pre-trained DeepLabV3 predictions,
we see that the pre-trained model predicts much smoother
object boundaries. This makes sense as contrastive pre-
training optimized the encoder to extract high-level features
from the image to match images together. This is likely bi-
ased against low-level granular details, such as pixel-wise
locations of each material, and instead focuses on capturing
general locations and the presence of each object. Thus, the
pre-trained DeepLabV3 misses out on the low-level details
required for accurate semantic segmentation. However, the
contrastively pre-trained DeepLabV3 is also the only model
able to notice the presence of a sizeable red object class in
the picture, highlighting that contrastive pre-training helped
the model pick up on the high-level presence of objects bet-
ter than before.

Inspecting the UARNet output image, it is able to pick
up on more fine-grained details, resulting in more com-
plex object shapes than the DeepLabV3 baseline, and it also
picks up on fine-grained presence of the red object class, al-
though it is more scattered. However, we observe that the
confidence map of UARNet displays that it is significantly
less confident of its background predictions than all other

models, as seen by the overwhelming blue regions. UAR-
Net’s CNN learned to override its ”highest” confidence in-
put logit class in place of classes it knows it is more ac-
curate at predicting (i.e. the background class), Thus, the
UARNet learns to output the predictions it has much less
confidence in, explaining why much more of the confidence
heatmap is blue. Inspecting the CRFPP prediction, we no-
tice that many of the original baseline predictions got re-
duced to background predictions, and the detected yellow
object is more granular. This makes sense as the CRF
performed smoothing, and as many objects are surrounded
by background (especially at narrow protruding sections),
these pixels got smoothed out to become background pixels.
The heatmap also displays that CRFPP is highly confident
in all of its pixels, as any pixels that were not smoothed
were surrounded by enough neighboring pixels that they
must have been correct. This ultimately indicates that the
CRFPP model did not end up reinforcing object boundaries
as expected, and instead ended up converting many pixels
on an object boundary into the background class.

6. Conclusion and Future Work
In conclusion, our highest-performing model was

DeepLabV3 with no contrastive pretraining or post-
training. Contrastive pretraining did not improve our re-
sults, which may be attributed to high intra-class variability
in the dataset and the strength of the original ImageNet-
pretrained ResNet50 encoder. However, the consistently
smoother object boundaries suggest contrastive pretraining
is not well-suited for fine-grained semantic segmentation
tasks, but may serve significant benefits towards higher-
level general object detection and bounding box placement
tasks. CRFPP led to smoother predictions, which increased
precision but often suppressed minority classes, lowering
overall IoU. CRFPP ultimately proved to be a poor choice
for waste segmentation tasks due to overactivated smooth-
ing and inability to recognize object boundaries (in favor
of background pixels). UARNet demonstrated a more se-
lective effect, improving class predictions that the model
was already strong in, while degrading low-confidence
classes. Despite these tradeoffs, it remained competitive
across models but did not surpass the performance of the
original DeepLabV3 baseline. UARNet proves itself as a
viable post-training architecture in waste classification tasks
that prioritize the classification of a few, more important and
abundant classes.

If we had more computational resources, we would re-
visit contrastive pretraining with significantly larger batch
sizes, as SimCLR benefits from a greater number of neg-
ative samples. Alternatively, we could explore memory-
efficient contrastive learning methods such as MoCo or
BYOL, which mitigate the need for large batches through
momentum encoders or asymmetric architectures. We are



Figure 5. Qualitative example showcasing prediction maps and confidence heatmaps of DeepLabV3, Contrastive Pretraining DeepLabV3,
DeepLabV3 + UARNet, DeepLabV3 + CRFPP

also interested in augmenting contrastive learning with
multi-task objectives, such as edge detection or jigsaw re-
construction, to help the encoder learn richer semantic and
structural features for segmentation.

Beyond pretraining, we see opportunities to improve
post-processing methods. For example, class-specific
CRFPP could help prevent over-smoothing of minority
classes by adjusting refinement strength per class. Ad-
ditionally, we can experiment with different metrics be-
sides confidence for refinement. The confidence heuris-
tic in UARNet proved useful for improving model perfor-
mance, suggesting that exploring more complex confidence
heuristics and other per-pixel heuristics may be beneficial
for reweighting model outputs at test time.

A. Appendix

B. Contributions

• James Cheng: Developed Predict-All-Background,
DeepLabV3, and contrastive pretraining methods.
Also created evaluation metrics.

• Andy Ouyang: Conducted literature review, imple-

mented qualitative analysis code

• Nishikar Paruchuri: Trained U-Net, UARNet, and
CRFF post-processing methods.

C. Python Libaries

Package Version

numpy 1.24.0
matplotlib 3.6.3
pandas 1.5.3
torch 2.0.1
torchvision 0.15.2
tqdm 4.64.0
PyDenseCRF 1.0
segmentation-models-pytorch 0.3.3
albumentations 2.0.8
torchmetrics 1.7.2

Table 5. Library versions used in our Colab environment.
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